Posts tagged Cloud
First Impressions of Oracle Autonomous Data Warehouse Cloud

Regular readers of this blog will know that my day-to-day work involves ingesting, storing and then analyzing petabytes of data using Google BigQuery, one of a new generation of fully-managed, cloud-hosted data warehouse platforms-as-a-service. Services like BigQuery take care of all the database infrastructure management and capacity planning leaving you just to define tables, load data into them and then run queries using SQL or your favourite BI tool.

Oracle recently announced Oracle Autonomous Data Warehouse Cloud (ADWC) that competes in this market and given my background in Oracle technology I was interested to see how it stacked-up compared to BigQuery and similar services from the likes of Amazon AWS and Snowflake. To do this I took advantage of Oracle’s free $300 service credit offer and signed-up for an ADWC instance – note that at the time of writing the ADWC service is only available in Oracle Public Cloud’s North American datacenter region as opposed to the European ones so make sure you choose the former when creating your Oracle Cloud account.

Setting up an Oracle on-premises database was something once-upon-a-time I’d spent months and thousands on course fees studying for certifications to be able to do confidently, so it was nice to see how things had got a lot simpler with setting up an ADWC instance with the first step being to select ADWC from the Oracle Cloud Services menu, like this:

Then answer a few simple questions: the name to give the instance, number of CPUs and amount of storage to set aside initially, and the password for the administrator account.

Setup of an instance takes a few minutes, then its ready. Not bad.

The next big change you notice compared to Oracle’s customer-managed Database Cloud Service is the replacement of Enterprise Manager Database Express 12c and DBaaS Console with a single Service Console, accessed not through the usual SYS and SYSTEM superuser accounts but through a new superuser account called ADMIN, presumably adopting a naming standard more familiar to users of other SaaS and PaaS platforms.

The Service Console contains a couple of performance-tracking pages with the emphasis on read-only viewing of those stats vs. giving you controls to fine-tune database parameters or table structures, and a page where you can download a zip file containing a wallet directory with TNSNAMES.ORA and encrypted connection details to your ADWC instance.

I seem to remember at the time of Autonomous Data Warehouse Cloud’s launch that many in the Oracle community (myself included, most probably) said that all that the “autonomous” part of Autonomous Data Warehouse Cloud did was automate the Oracle Database maintenance tasks that more recent data warehousing platforms-as-a-service handled for you automatically. Another common critique at that time was that under the covers ADWC was more scripting and use of existing “advisors” than true autonomous artificial intelligence-style database management.

To be honest though, it doesn’t matter; compared to running a regular Oracle database you just fill in a short form and the platform runs without any further intervention from you, you don’t need to know how it works, job done in terms of competing with BigQuery and Redshift for ease-of-use and maintenance.

Connecting to ADWC is a bit different to regular Oracle Database connections in that it’s easier — no need to specify host, port and SID/service name — but this involves downloading a ZIP file wallet and the tool you wish to connect having support for that wallet. Oracle SQL Developer in its most recent 18c version has that support making it the obvious tool to define new users, create tables and upload data into them and then run simple SQL queries against your data.

Oracle ADWC is based on Oracle Exadata Database Server technology and supports PL/SQL, full INSERT/UPDATE/DELETE support in SQL as well as SELECT, parallel query (enabled by default) and hybrid columnar compression.

What you don’t get are indexes and materialized views as these generally aren’t considered necessary when running on Exadata hardware that’s optimized for full table scans of data arranged in compressed columnar format, and as ADWC charges per CPU per hour there’s no penalty in scanning lots of detail-level data unnecessarily as you get with BigQuery.

Also missing are features such as the Oracle OLAP Option, Oracle Spatial and Graph and Oracle Text that I’m guessing might get implemented at a later date, along with management features such as Oracle Tuning Pack that are no longer needed when the autonomous features of the platform do the database tuning for you.

Price-wise, although as I said a moment ago you do get charged by the amount of data you scan (and a bit for storage) with Google BigQuery, Oracle AWDC seems to be more expensive to run at least at the data volumes I’d be using as a developer initially evaluating the product.

If you commit to monthly charging then ADWC costs around $1200/cpu/month whereas Google charge $5/TB for queries with the first 1TB each month free plus a token amount for storage and streaming inserts, which meant my bill last month for BigQuery came to just $1.53 and my total bill for all Google Cloud Platform services including multiple hosted VMs and extensive usage of ther NLP and Geocoding APIs took the total up to just over $150. Clearly Google are aiming more at the startup market whereas Oracle are serving enterprise customers, but don’t make the assumption that just because AWDC is elastic it’s also super-cheap for hobbyist use, long-term.

So now its a case of loading some sample data into ADWC using SQL Developer and then running a couple of test queries to see it working in action with my data.

Tomorrow, I’ll show how Looker be connected using the newly announced support it has for Oracle ADWC and later on in the week do the same for Oracle Analytics Cloud and DV Desktop.

Oracle Analytics Cloud … and the (Welcome) Return of the Enterprise BI Platform

Oracle Analytics Cloud, the “full” implementation of Oracle’s business analytics platform tools in Oracle Public Cloud, was released back in May 2017 and I covered its basic product proposition in a Drill to Detail Podcast episode with Oracle’s Vasu Murthy a few weeks just before then.

Up until now I’d not really had a chance to properly review Oracle Analytics Cloud as the products I work with right now are mainly based around Google’s Cloud Platform and the Looker BI tool, but Oracle kindly made available some cloud promotion credits through their Oracle ACE Director community program and so I gave it as well as a few other supporting cloud services a spin over the Christmas break.

In the end it was only really a high-level evaluation but with my previous experience with Oracle’s BI Cloud Service, Data Visualization Desktop and Cloud Services and the on-premises versions of their BI Enterprise Edition product line I was able to get up and running fairly quickly. More interestingly for me was trying to work out who the target market is for Oracle Analytics Cloud and what particular use-cases it tries to address; why Oracle released Oracle Analytics Cloud when they already have Oracle BI Cloud Service and how they differentiate the two products and the two markets they presumably serve; and to try and speculate on why Oracle made the choices it made when coming-up with Oracle Analytics Cloud given the competition it faces in the market.


For anyone not so familiar with Oracle’s business analytics products you’ve basically got a classic end-to-end enterprise BI platform, Oracle Business Intelligence 12c, that covers everything from reporting tools through to business metadata modeling to application and database server integration that typically sold to the IT function within corporate and government customers and was recently joined by Oracle Data Visualization that turned this all on its head and sold to the sorts of buyers who were now buying Tableau on their company credit cards and bypassing the IT department so that they could actually get something done.

Oracle’s first forays into moving all this into the cloud were focused again on the needs of these non-technical business buyers starting with Oracle Business Intelligence Cloud Service (“BICS”), a departmental cut-down version of Oracle Business Intelligence that I covered in an article for Oracle Magazine when the product first came out. Over time BICS was extended to include data visualization capabilities that were being introduced with the Data Visualization Option for the new Oracle Business Intelligence 12c release and then just those visualization features were packaged up into another end-user focused cloud service, Oracle Data Visualization Cloud Service, that became available around two years ago.

One thing you couldn’t do with any of those cloud tools though was migrate your on-premises Oracle BI deployments into Oracle’s Public Cloud, as BICS made you use a cut-down version of the Oracle Database along with a much-simplified data modeling tool to store and organize your data for reporting, but around the same time as Data Visualization Cloud Service came out it started to become possible to “lift-and-shift” your full enterprise business metadata models into BICS and run them against full Oracle Database instance running in the cloud or on-premises databases using a special secure connector between Oracle’s cloud data centres and the one running your Oracle database servers.

“Lifting and Shifting” an on-premises RPD into Oracle BI Cloud Service

What some customers still wanted though was more than this; BICS, DVCS and all the other BI products Oracle offered were fully-managed services, not unlike Looker and Google’s BigQuery distributed database service that I use day-to-day in my current product management role at Qubit. What these customers wanted was full on-premise Oracle Business Intelligence running in Oracle Public Cloud that they could then connect into securely and manage the configuration settings to suit just their particular needs, and choose when to apply patches and when to run backups to suit their standard operating model.

What they also wanted was full unfettered access to Oracle’s BI Server metadata layer, so they could not only upload their on-premises business metadata models but then extend and update them and at the same time incorporate elements of functionality from Oracle’s Essbase Server that had also recently made its own transition into Oracle Public Cloud. Crucially, these customers still wanted to pay for all of these software costs monthly out of OpEx but also wanted the license metric to move back to per-processor rather than the named-used basis BICS and DVCS used, so they could then roll-out cloud analytics to everyone in the organization rather than just a few users and also spin-up test, development and pre-production environments if they’d licensed enough processor capacity to run them all. This, then, was the set of requirements Oracle Analytics Cloud was put together to meet, and so I took a look at what v1 of this new product looked like over the time between Christmas and New Year.


Installing Oracle Analytics Cloud is more like installing Tableau Server, or one of the other pre-rolled BI server software VMs you find on services such as AWS Marketplace, than than getting a new account on BICS or one of the other Oracle fully-managed service running on Oracle Public Cloud. You first have to set up some object storage space using Oracle Cloud Storage to hold the various configuration and log files OAC will require, then setup a database instance using Oracle Database Cloud Service to hold the RCU schema that OAC will require.

Creating the Oracle Analytics Cloud service

Oh, and you almost definitely need some prior knowledge of how to setup and configure Oracle software, and the previous on-premises version of Oracle Business Intelligence, before any of this makes sense; Oracle Analytics Cloud is definitely aimed at the IT department rather than casual business users, and moreover those IT departments already invested in Oracle’s analytics, database and cloud technologies for whom this will seem very familiar and in-fact will seem very reassuring — this is Oracle’s full on-premise functionality ported up into the cloud, not some cut-down managed-for-you version that hides all the controls and is impossible to manage via your own DevOps scripting.

Truth be told, I found the installation process just baffling when I first ran through it; being more used to services such as Looker and Google’s BigQuery, Cloud DataPrep and Google Data Studio products these days being presented with software where you actually need to understand the installation process and what it’s doing, and that process requires mandatory knowledge of other current and historic products relating to the one I was installing, seemed crazy in-comparison to the startup-friendly SaaS products I’m more familiar with these days.

But every organization isn’t a startup, and every user of an installer utility isn’t a non-technical business user; complex enterprise software is complex because enterprises, and large government customers have gone beyond simple customer success departments, growth hackers and biz ops teams to instead needing to support operations across multiple countries, integrate with legacy systems you’ve never heard of and hopefully never will, and do everything according to strict sets of rules such as Sarbanes-Oxley and HIPAA that land you in jail if you don’t comply with them. These types of organization have very strict rules and procedures around how software is hosted, accessed and managed and vendors like Oracle know these customers’ needs well, who would in most cases prefer a complex but controllable installation process over one that hides all the details but potentially leaves them exposed to regulatory issues thereafter, meaning they can’t ever sign-off the provisioning process as complete and fully-compliant.

And one of the first lessons I learnt in product management is that whilst engineers and product managers prefer packages that give end-users all available functionality for one simple price, enterprise salespeople much prefer options.

PMs like packages, enterprise sales prefer options

With packages sold to enterprises with a single list price advertised — say, $1m all-in for the right to run everything on a single high-powered server — what happens in reality is that one or two customers pay that price, but the vast majority get some sort of discount so that everybody pays something and no sales are lost just because the customer couldn’t afford the list price.

What works far better when selling enterprise deals is when everything beyond a basic core set of functionality becomes an option and customers can then align what they want with what they can afford without the vendor giving everything away each time and massively-discounting deals to make them affordable.

Hence Oracle Analytics Cloud having both Standard and Enterprise Editions, and the Standard Edition having two variants based around just data visualization or just Essbase, and there being an upcoming Data Lake Edition that will include other net-new functionality, and presumably some time in the future other functionality being added as additional options that will need further license spend by the customer before becoming available to their end-users.

Just remember when you’re sitting in the engineering department mocking the salespeople that extracting the right price from the right customers whilst everyone feeling they’ve got a good deal is what b2b selling is all about, which is why those salespeople are about the only people who are paid more than the engineers in most startups.


So what does Oracle Analytics Cloud look like once you’ve uploaded or pointed it towards some data, and started to visualize and analyze it using the various tools available to you in the platform? Well it’s effectively Oracle Business Intelligence 12c with the Data Visualization Option, at least in the configuration I’d chosen; “Self-Service Data Visualization, Preparation and Smart Discovery” along with “Enterprise Data Models” which translates to Visual Analyzer plus Answers, Dashboards and a full RPD in old on-premise terms. There’s the new home page inherited from Visual Analyzer and a new console that allows you to perform admin functions, define and work with data sources and download the BI Administration tool if the online modeler is too simplistic for your project.

Oracle Analytics Cloud Console and Home Page

I was able to upload and then analyze some of my cycling stats from Strava, working out that Saturdays in September were my best time for logging the miles and working off some calories in the last twelve months.

Visual Analyzer within Oracle Analytics Cloud

I was also pleased to see that the classic Answers interface was also still available along with the original home page, recent and popular content and task menus.

Classic Answers interface from OBIEE12c within Oracle Analytics Cloud

And this gets to what the central appeal of Oracle Analytics Cloud really is; it’s full Oracle Business Intelligence 12c, Oracle Data Visualization and Oracle Essbase with all the configuration options, IT appeal and product capabilities that were built-up over the years based on the requirements of large-scale, sophisticated and demanding enterprise and government customers. It’s not Superset or Looker, it makes no sense to anyone who’s not already invested in the Oracle analytics and database ecosystems and it can meet just about any analytics requirement, and then some … and now it all runs natively in the cloud.

Sadly my trial account and promotional credits ran out after a couple of weeks but if Oracle are ever kind enough to extend that access sometime in the New Year I’d be glad to roll-up my sleeves, dust-down my old book on how it all works and give this new cloud incarnation of the product that defined my career for the best part of ten years a further look.